The Bounded Convergence Theorem for Riesz Space-Valued Choquet Integrals

نویسندگان

  • JUN KAWABE
  • J. Kawabe
چکیده

The bounded convergence theorem on the Riesz space-valued Choquet integral is formalized for a sequence of measurable functions converging in measure and in distribution. 2010 Mathematics Subject Classification: Primary 28B15; Secondary 28A12, 28E10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY

The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-doub...

متن کامل

New Smoothness Conditions on Riesz Spaces with Applications to Riesz Space-valued Non-additive Measures and Their Choquet Integrals

In this summary we introduce a successful analogue of the classical Egoroff theorem for non-additive measures with values in a Riesz space having the asymptotic Egoroff property.

متن کامل

Nonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings

In this paper, based on viscosity technique with perturbation, we introduce a new non-linear viscosity algorithm for finding a element of the set of fixed points of nonexpansivemulti-valued mappings in a Hilbert space. We derive a strong convergence theorem for thisnew algorithm under appropriate assumptions. Moreover, in support of our results, somenumerical examples (u...

متن کامل

The Symmetric Choquet Integral with Respect to Riesz-space-valued Capacities

In [3] we introduced a “monotone-type” (that is, Choquet-type) integral for realvalued functions, with respect to finitely additive positive set functions, with values in a Dedekind complete Riesz space. A “Lebesgue-type” integral for such kind of functions was investigated in [7]. In [4] we gave some comparison results for these types of integrals. In [10], a Choquet-type integral for real-val...

متن کامل

Generalized Fuzzy Valued Θ-choquet Integrals and Their Double-null Asymptotic Additivity

The generalized fuzzy valued θ-Choquet integrals will be established for the given μ-integrable fuzzy valued functions on a general fuzzy measure space, and the convergence theorems of this kind of fuzzy valued integral are being discussed. Furthermore, the whole of integrals is regarded as a fuzzy valued set function on measurable space, the double-null asymptotic additivity and pseudo-double-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012